If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+22x=0
a = 3; b = 22; c = 0;
Δ = b2-4ac
Δ = 222-4·3·0
Δ = 484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{484}=22$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(22)-22}{2*3}=\frac{-44}{6} =-7+1/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(22)+22}{2*3}=\frac{0}{6} =0 $
| z/4+3=-28 | | 4x-4=300 | | 6^(x-4)=24 | | z/4+3=−28 | | 3/4x-2=19 | | k/3+2=24 | | 19p=4p+5 | | 10(z+3)=4(2z+9) | | 15=n-15 | | 24=6.48r | | 2(3w+5=46 | | (2x-3)/2-(x-3)/4=(3x+1)/4-1 | | 5{u+3}=50 | | 1/4(x-3)^2=25 | | 6x–8+2x+4=x+10 | | 48=14w-6w | | 5x*12=13 | | x+33x-2=162 | | 78=n*n-3 | | (2x+5)x=0 | | 3x+x+40+x=180 | | 10x-6x+12=10x-8-16 | | r/8-6=3 | | (4x+7)x=0 | | m−20=9 | | 40=-5a–20 | | (4x+2)(8x+7)=0 | | 3/4(4a+12)=21 | | 35=-5/4w | | 42=x/5+2 | | 4(g+1=28 | | 5/2p=45 |